

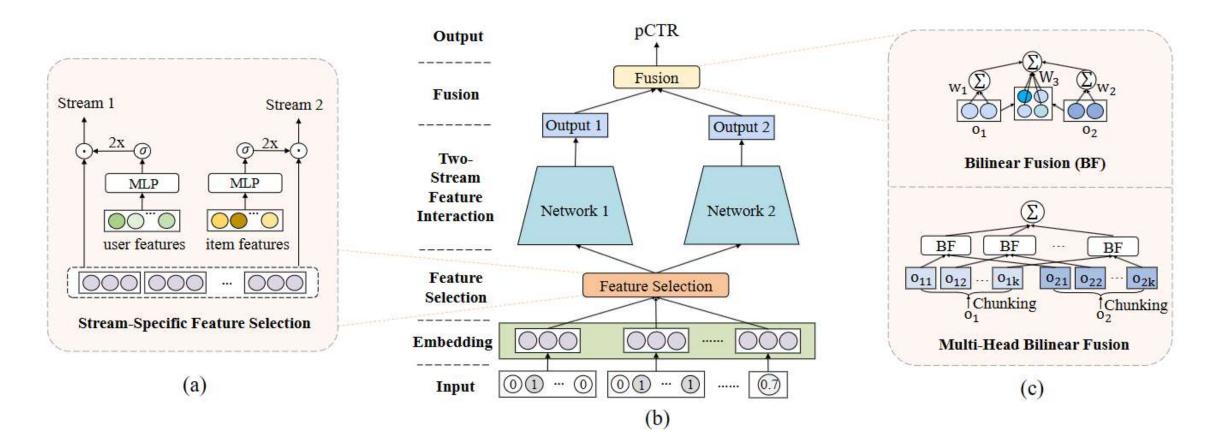
FinalMLP: An Enhanced Two-Stream MLP Model for CTR Prediction

Kelong Mao^{1*}, Jieming Zhu^{2*}, Liangcai Su³, Guohao Cai², Yuru Li², Zhenhua Dong²

¹Gaoling School of Artificial Intelligence, Renmin University of China ²Huawei Noah's Ark Lab ³Tsinghua University kyriemkl@gmail.com, jiemingzhu@ieee.org, sulc21@mails.tsinghua.edu.cn

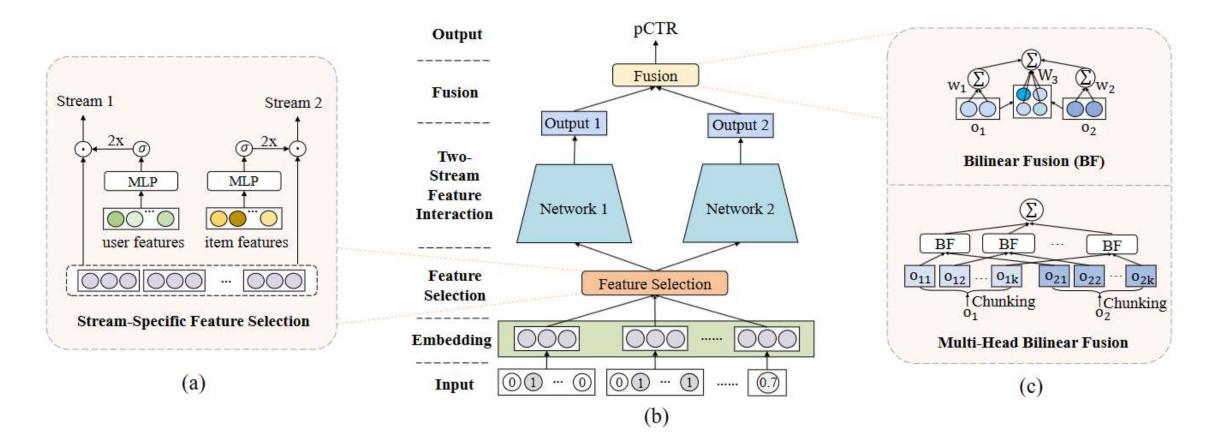
AAAI 2023 Code: MindSpore/models and Fux-iCTR/model zoo

Reported by liang li

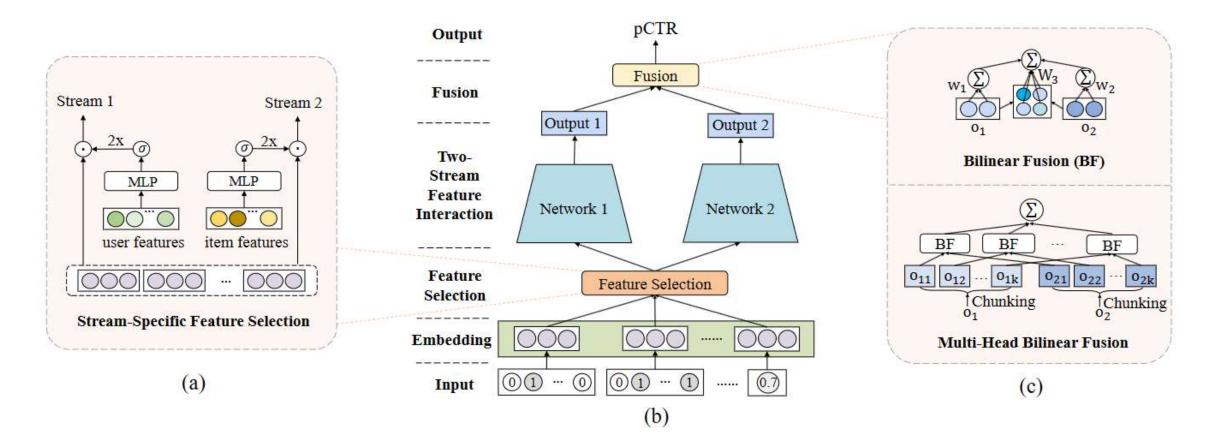


Details:

- Existing two-stream models often combine two streams via summation or concatenation, which may waste the opportunity to model the high-level (i.e., stream-level) feature interactions.
- In contrast, our empirical study shows that a well-tuned two-stream MLP model that simply combines two MLPs can even achieve surprisingly good performance.

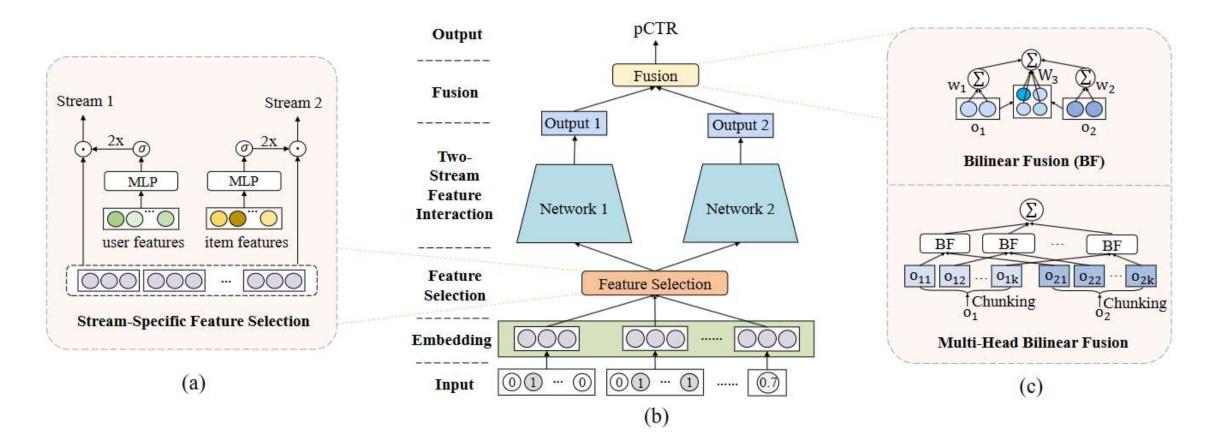

Problem Statement

$$x = \{x_1, ..., x_M\}$$



$$\mathbf{o_1} = MLP_1(\mathbf{h_1}),$$
 (1) $\mathbf{g_1} = Gate_1(\mathbf{x_1}), \ \mathbf{g_2} = Gate_2(\mathbf{x_2}),$ (3)

$$\mathbf{o_2} = MLP_2(\mathbf{h_2}), \qquad (2) \qquad \mathbf{h_1} = 2\sigma(\mathbf{g_1}) \odot \mathbf{e}, \quad \mathbf{h_2} = 2\sigma(\mathbf{g_2}) \odot \mathbf{e}, \qquad (4)$$



$$\hat{y} = \sigma(b + \mathbf{w}_1^T \mathbf{o}_1 + \mathbf{w}_2^T \mathbf{o}_2 + \mathbf{o}_1^T \mathbf{W}_3 \mathbf{o}_2), \qquad (5) \qquad \mathbf{o_1} = [\mathbf{o_{11}}, \dots, \mathbf{o_{1k}}], \qquad (7)$$
$$\hat{y} = \sigma(b + \mathbf{w}^T \mathbf{x} + \mathbf{x}^T \operatorname{upper}(\mathbf{P}\mathbf{P}^T)\mathbf{x}), \qquad (6) \qquad \mathbf{o_2} = [\mathbf{o_{21}}, \dots, \mathbf{o_{2k}}], \qquad (8)$$

$$\hat{y} = \sigma(\sum_{j=1}^{k} BF(\mathbf{o_{1j}}, \mathbf{o_{2j}})), \qquad (9) \qquad \mathcal{L} = -\frac{1}{N} \sum \left(y \log \hat{y} + (1-y) \log(1-\hat{y})\right)$$

Dataset	#Instances	#Fields	#Features
Criteo	45,840,617	39	2,086,936
Avazu	40,428,967	22	1,544,250
MovieLens	2,006,859	3	90,445
Frappe	288,609	10	5,382

Table 1: The statistics of open datasets.

Dataset	Metric	WideDeep	DeepFM	DCN	xDeepFM	AutoInt+	AFN+	DeepIM	MaskNet	DCNv2	EDCN	DualMLP	FinalMLP
Criteo	AUC	81.38	81.38	81.39	81.39	81.39	81.43	81.40	81.39	81.42	<u>81.47</u>	81.42	81.49
Cinco	Std	5.7e-5	8.0e-5	4.9e-5	9.5e-5	1.4e-4	5.9e-5	5.9e-5	1.3e-4	2.0e-4	6.6e-5	5.6e-4	1.7e-4
Avazu	AUC	76.46	76.48	76.47	76.49	76.45	76.48	76.52	76.49	76.54	76.52	76.57	76.66
Avazu	Std	5.4e-4	4.4e-4	1.2e-3	4.1e-4	5.2e-4	3.7e-4	9.2e-5	2.6e-3	4.7e-4	3.0e-4	3.5e-4	4.9e-4
MovieLens	AUC	96.80	96.85	96.87	96.97	96.92	96.42	96.93	96.87	96.91	96.71	<u>96.98</u>	97.20
WovieLens	Std	3.2e-4	1.6e-4	5.5e-4	9.0e-4	4.4e-4	5.8e-4	5.8e-4	2.8e-4	3.6e-4	3.4e-4	4.3e-4	1.8e-4
Frappe	AUC	98.41	98.42	98.39	98.45	98.48	98.26	98.44	98.43	98.45	98.50	98.47	98.61
тарре	Std	7.9e-4	1.6e-4	3.1e-4	3.7e-4	7.9e-4	1.4e-3	6.3e-4	5.7e-4	4.3e-4	5.1e-4	3.5e-4	1.7e-4

Table 2: Performance comparison of two-stream models for CTR prediction. The best results are in bold and the second-best results are underlined.

Experiments

Class	Model	Criteo	Avazu	MovieLens	Frappe
First-Order	LR	78.86	75.16	93.42	93.56
	FM	80.22	76.13	94.34	96.71
Coord	AFM	80.44	75.74	94.72	96.97
Second-	FFM	80.60	76.25	95.22	97.88
Order	FwFM	80.63	76.02	95.58	97.76
	FmFM	80.56	75.95	94.65	97.49
	HOFM(3rd)	80.55	76.01	94.55	97.42
Third-	CrossNet(2L)	79.47	75.45	93.85	94.19
Order	CrossNetV2(2L)	81.10	76.05	95.83	97.16
	CIN(2L)	80.96	76.26	96.02	97.76
	CrossNet	80.41	75.97	94.40	95.94
	CrossNetV2	81.27	76.25	96.06	97.29
	CIN	81.17	76.24	96.74	97.82
Higher- Order	AutoInt	81.26	76.24	96.63	98.31
	FiGNN	81.34	76.22	95.25	97.61
	AFN	81.07	75.47	96.11	98.11
	SAM	81.31	76.32	96.31	98.01
	MLP	81.37	76.30	96.78	98.33

Table 3: Performance comparisons between MLP and explicit feature interaction networks. The best results w.r.t. AUC are in **bold** and the second-best results are <u>underlined</u>.

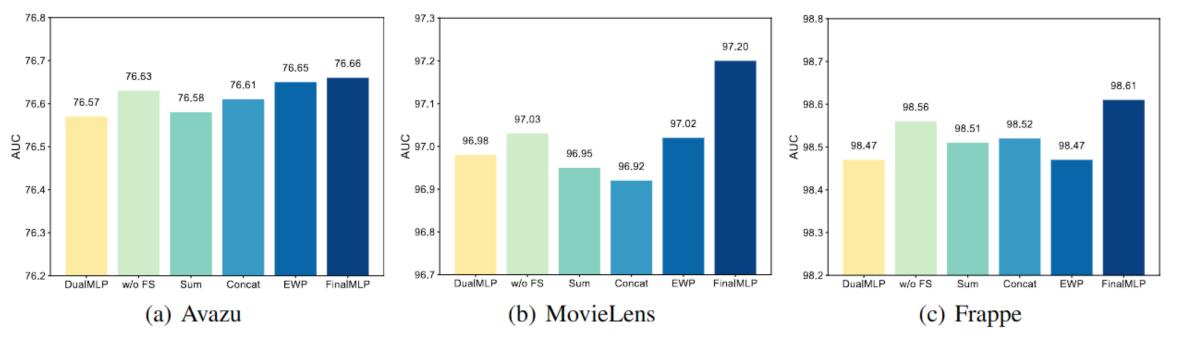


Figure 2: The ablation study results of FinalMLP.

#Heads (k)	Criteo	Avazu	MoiveLens	Frappe
1	OOM	0.7649	0.9691	0.9862
5	0.8141	0.7661	0.9707	0.9851
10	0.8144	0.7669	0.9724	0.9849
50	0.8148	0.7657	0.9703	0.9841

Table 4: Bilinear fusion with different numbers of heads.

	DeceMedal	EDCN	FinalMLP		
	BaseModel	EDCN	#Heads=1	#Heads=8	
AUC	71.78	72.22	72.83	72.93	
ΔAUC		+0.44	+1.05	+1.15	
Latency	45ms		70ms	47ms	

Table 5: Offline results in production settings.

	Day1	Day2	Day3	Day4	Day5	Average
ΔCTR	1.6%	0.6%	1.7%	1.5%	2.4%	1.6%

Table 6: Online results of a five-day online A/B test.

Thanks